аⅴ天堂最新版在线中文丨久久天天躁狠狠躁夜夜躁2o2o丨国产人妻精品无码av在线丨强伦姧人妻三上悠亚中文字幕丨国产亚洲欧美一区二

Solution
Boiler feedwater treatment systems for power plants, steel mills, chemical plants, etc

Boiler feedwater treatment systems for power plants, steel mills, chemical plants, etc

In the thermal systems of chemical and thermal power plants, the quality of water is an important factor affecting the safety and economic operation of thermal equipment. Natural water contains many impurities. If these water are introduced into thermal equipment without purification treatment, it will cause various hazards due to poor quality of steam and water, mainly scaling, corrosion, and salt accumulation of thermal equipment.
Scaling: Scaling is highly likely to occur in areas with high heat loads, such as boiler tubes and various heat exchangers. The thermal conductivity of scale is several hundred times worse than that of metal, and the scaled metal pipe wall will overheat, reduce strength, and cause damage to the pipeline. Improper treatment of cooling water can cause scaling of condenser copper pipes, reduce heat transfer efficiency, and ultimately lower turbine output.
Corrosion: Poor water quality can cause corrosion of thermal equipment, mainly electrochemical corrosion, which is prone to occur in metal parts that frequently come into contact with water, such as water supply pipelines, economizers, water-cooled walls, superheaters, steam turbines, and condensers. Corrosion will greatly reduce the service life of equipment.
Salt deposition: When steam containing a large amount of impurities passes through the superheater and turbine, impurities will deposit, which is called salt deposition in the superheater and turbine; The accumulation of salt in the superheater may cause tube bursting, and the accumulation of salt in the turbine will greatly reduce the output of the turbine.

Boiler feedwater quality standards

Control project

Standard value and expected value

Overheated steam pressure Mpa

drum boiler

Once-through boiler

3.8~5.8

5.9~12.6

12.7~15.6

>15.6

5.9~18.3

>18.3

Hydrogen conductivity(25℃) μS/cm

Standard value

≤0.30

≤0.30

≤0.15a

≤0.15

≤0.10

Expected value

≤0.10

≤0.10

≤0.08

Hardness/(μmol/L)

Standard value

≤2.0

Dissolved oxygen μg/L

AVT(R)

Standard value

≤15

≤7

≤7

≤7

≤7

≤7

AVT(O)

Standard value

≤15

≤10

≤10

≤10

≤10

≤10

Iron  μg/L

Standard value

≤50

≤30

≤20

≤15

≤10

≤5

Expected value

≤10

≤5

≤3

Copper μg/L

Standard value

≤10

≤5

≤5

≤3

≤3

≤2

Expected value

≤2

≤2

≤1

Sodium  μg/L

Standard value

≤3

≤2

Expected value

 

≤2

≤1

Silica μg/L

Standard value

≤20

≤20

≤20

≤20

≤15

≤10

Expected value

≤10

≤10

≤10

≤10

≤5

Chloride ion /(μg/L)

Standard value

≤2

≤1

≤1

TOCi (μg/L)

Standard value

≤500

≤500

≤200

≤200

≤200

For water-cooled units without condensate polishing and desalination devices, the hydrogen conductivity of the feedwater should not exceed 0.30 μ S/cm.

 

主站蜘蛛池模板: 庆城县| 平昌县| 吴旗县| 同仁县| 岑溪市| 阿拉尔市| 双牌县| 桃园县| 峨边| 满城县| 固阳县| 呼图壁县| 台湾省| 靖西县| 广宗县| 万州区| 奈曼旗| 赤城县| 阳山县| 北安市| 陆川县| 大理市| 苗栗市| 四川省| 诸暨市| 依安县| 阿尔山市| 滦平县| 太仆寺旗| 丰都县| 阜康市| 自贡市| 晋宁县| 马鞍山市| 凤翔县| 佳木斯市| 凤山市| 晴隆县| 湘乡市| 五寨县| 翁牛特旗|